A Self-Learning System for
Detection of Anomalous SIP Messages

Konrad Rieck!, Stefan Wahl?, Pavel Laskov!3, Peter Domschitz?, and
Klaus-Robert Miiller!#

! Fraunhofer Institute FIRST, Intelligent Data Analysis, Berlin, Germany
2 Alcatel-Lucent, Bell Labs Germany, Stuttgart, Germany
3 University of Tiibingen, Wilhelm-Schickard-Institute, Germany
4 Technical University of Berlin, Dept. of Computer Science, Germany

Abstract. Current Voice-over-IP infrastructures lack defenses against
unexpected network threats, such as zero-day exploits and computer
worms. The possibility of such threats originates from the ongoing con-
vergence of telecommunication and IP network infrastructures. As a
countermeasure, we propose a self-learning system for detection of un-
known and novel attacks in the Session Initiation Protocol (SIP). The
system identifies anomalous content by embedding SIP messages to a
feature space and determining deviation from a model of normality. The
system adapts to network changes by automatically retraining itself while
being hardened against targeted manipulations. Experiments conducted
with realistic SIP traffic demonstrate the high detection performance of
the proposed system at low false-positive rates.

1 Introduction

Voice-over-IP (VoIP) infrastructures provide a replacement of current circuit-
switched networks. VoIP and IP multimedia subsystem (IMS) technology re-
duces deployment costs and provides extensive functionality to operators and
end users. The advent of VoIP and IMS technology, however, gives rise to new
security threats originating from network-based as well as service-based vulner-
abilities. For instance, IP networks connected to the Internet are plagued by
network attacks and malicious software. Unfortunately, VoIP infrastructures in-
herently possess properties attractive to developers of malicious software:

1. Diversity. Enterprise VoIP infrastructures consist of a large amount of het-
erogeneous network nodes covering mobile and wired end devices as well
as gateway and registration servers of various manufacturers and brands. A
single security breach in any of these nodes suffices to infiltrate the infras-
tructure, e.g, to eavesdrop communication at compromised nodes.

2. Awailability. A second inherent property of VoIP infrastructures is avail-
ability, which is necessary for unimpeded communication between network
nodes. Malicious software, such as a potential “VoIP worm”, might exploit
this property to rapidly propagate through the infrastructure comprising the
vast majority of vulnerable nodes in a matter of minutes [30].



3. Lack of transparency. Terminal devices of VoIP services usually hide network
and operating system details such as running processes and services from the
end user. For instance, given a smartphone with VoIP capabilities it is hard
to assess, whether the system has been compromised. Malicious software not
disrupting functionality may control VoIP devices for a long period of time
without being detected, for example to distribute unsolicited content.

It is likely from these features that current security threats will enter the
realm of VoIP infrastructures in the near future. Especially the increasing com-
mercialization of malicious software may further advance this development, e.g.,
as observed for the computer worm “Storm” [8].

A large body of research has focused on security defenses specific to IP tele-
phony, such as the identification of fraudulent usage, the detection of denial-of-
service attacks and the recognition of unsolicited content. Various concepts of
misuse detection have been studied in the field of VoIP security, e.g., intrusion
detection systems based on signatures [6, 19], rules [4, 36], protocol specifica-
tions [28, 32] and VoIP honeypots [15, 17]. Yet few research has considered the
detection of unknown and novel network attacks, which arise with the appearance
of zero-day exploits and computer worms. Systems based on misuse detection
do not address this problem, as signatures or rules need to be available prior to
the emerging security threats.

In this contribution, we propose a self-learning system for detection of un-
known and novel attacks in the Session Initiation Protocol (SIP), which com-
plements current VoIP security measures. The system enables identification of
anomalous content by embedding SIP messages to a feature space and determin-
ing deviation from a model of normality. The system is “self-learning”, as it is
capable to automatically retrain itself in order to adapt to moderate changes in
the network environment and traffic. Moreover, the retraining process is hard-
ened against targeted manipulation. Experiments conducted on realistic SIP
traffic and anomalous messages generated using a security testing tool demon-
strate the high effectiveness of the proposed system at low false-positive rates —
a criterion essential for practical deployment.

The rest of this paper is structured as follows: The self-learning system is in-
troduced in Section 2 covering details on feature extraction, anomaly detection
and retraining. Experiments on detection and run-time performance of the sys-
tem with SIP traffic are presented in Section 3. Related work on VoIP intrusion
detection is discussed in Section 4 and the paper is concluded in Section 5.

2 A Self-Learning System

To protect VoIP infrastructures from unknown network attacks, we introduce
a self-learning system for anomaly detection in the Session Initiation Protocol
(SIP [26]). SIP is a widely used protocol for signaling communication and trans-
mission of media in VoIP and IMS infrastructures. Network attacks targeting a
VoIP system may occur in any element or content of incoming SIP messages;
hence, our self-learning system is designed to analyze complete SIP messages as



raw byte sequences — eliminating the need of preprocessing and normalization
procedures. The architecture of our system is illustrated in Figure 1.

SIP Festure Anomaly
traffic Feature vectors Anomaly reports
™ extractor ™ detector >
A [
Extraction of Computation '+ 1 Re-training with
string features  of deviation | | normal SIP traffic
S A
Learning
model

Self-learning system

Fig. 1. Architecture of the self-learning system for SIP anomaly detection.

The basic processing stages of the system during operation are outlined in
the following and discussed in further detail in the rest of this section.

1. Feature extraction. Incoming SIP messages are analyzed using a set of feature
strings. Based on the occurrences of these strings, each messages is mapped
to a feature vector reflecting individual characteristics of the message as cap-
tured by the feature strings. This feature extraction is covered in Section 2.1.

2. Anomaly detection. The feature vectors corresponding to SIP messages are
compared against a model of normality. This model is either detecting global
or local anomalies by computing distances in the underlying vector space.
Anomalous SIP messages are flagged and reported by the system. The de-
tection process is described in Section 2.2.

3. Initialization & retraining. On initial deployment of the system as well as on a
periodic basis the learning model is updated using traffic flagged as normal.
To prevent external manipulation of the learning process randomization,
sanitization and verification of the model are performed. The initialization
and retraining process is discussed in Section 2.3.

2.1 Feature Extraction

The syntax and structure of SIP messages is defined by the SIP protocol specifi-
cation [26], yet such structure is not suitable for application of anomaly detection
methods, as these usually operate on vectorial data. To address this issue we de-
rive a technique for embedding SIP messages to a high-dimensional vector space,
which reflects typical characteristics of the observed SIP traffic. This embedding
has been successfully applied in the context of network intrusion detection [23]
and its efficient implementation is detailed in [24].

A SIP message corresponds to a sequence of bytes and its content can be
characterized by frequencies of contained substrings. For instance, the substrings



“From”, “To” and “Via” play an important role in the semantics of SIP. We define
a set of feature strings S to model the content of SIP messages. Given a feature
string s € S and a SIP message =, we determine the number of occurrences of s
in z and obtain a frequency value f(z,s). The frequency of s acts as a measure
of its importance in z, e.g., f(z,s) = 0 corresponds to no importance, while
f(z,s) > 0 reflects the contribution of s in .

An embedding function ¢ maps all SIP messages X to an |S|-dimensional
vector space by considering the frequencies of feature strings in S:

¢: X — R with ¢(z) — (f(2,5)),cq

For example, if S contains the strings “foo.org” and “john”, two dimensions in
the resulting vector space correspond to the frequencies of these strings in SIP
messages. Hence, the communication of a user “john” with a network node in
the domain “foo.org” would be reflected in high frequencies of these strings in
the respective SIP traffic.

However, it is impractical to define a set of feature strings S a priori, simply
because not all important strings are known in advance, e.g., the user “john”
might not be registered with the VoIP infrastructure when the self-learning sys-
tem is deployed. To solve this problem the set of feature strings S is defined
implicitly by introduction the notion of tokens and n-grams.

Tokens. SIP is a text-based protocol, thus, its content can be described in
terms of textual tokens and words. An implicit set of feature strings in this view
corresponds to all possible strings separated by specific delimiter symbols. If we
denote all byte values by B and define D C B as delimiter symbols, a set S
referred to as tokens is given by

S:= (B\ D)*,

where * is the Kleene closure corresponding to all possible concatenations of a
set. The resulting set S has an infinite size, since strings of any length containing
bytes from (B \ D) are contained in S. A SIP message, however, comprises only
a limited amount of such strings as the number of partitioned substrings in a
message is bounded by its length.

The following example illustrates how a simplified SIP message is mapped
to a vector space using the notion of tokens, where the set of delimiters is D =

{O0,e,:,/}.

1 BYE
2 SIP
¢( BYELJSIP: JOHNGDOE[ISIP/2.0) +— | 1 JOHN
1 DOE
1 2.0

The vector at the right comprises frequency values for each token in the simplified
SIP message. For instance, the two occurrences of the token “SIP” are reflected
in the second column of the feature vector.



The granularity of feature extraction based on tokens can be controlled us-
ing the delimiter set D. The less delimiters are defined the more specific are the
extracted tokens. For our self-learning system, we define the following delim-
iter symbols capturing generic SIP tokens such as header names, header values,
recipients and attribute strings.

D={:;,,,=<>/,SPCCR,LF}

N-grams. Tokens are intuitive and expressive to the human analyst, still they
may not always identify anomalous content of novel attacks, due to the definition
of delimiter symbols in advance. An alternative technique for implicit definition
of feature strings S are so called n-grams. Instead of partitioning a SIP message,
feature strings are extracted by moving a sliding window of length n over the
message content. At each position a substring of length n is considered and its
occurrences are counted. Formally, the set of feature strings S referred to as
n-grams is defined as

S := B",

where B™ corresponds to all possible strings of length n from the set B.

For example, if n = 4 we obtain 4-grams, which for the simplified SIP message
considered in the previous section yields the following embedding to a feature
vector space.

BYE[]
YEOIS
ECIST
LIsIP

[ SR NI

¢( BYELISIP: JOHN@DOEISIP/2.0) +—

Note, that similar to the previous example, the occurrences of the term “SIP”
are reflected in the feature vector. In particular, the 4-gram “ECISI” is contained
twice and its frequency is given in the third column of the feature vector. To
simplify presentation further 4-grams are not shown in the example.

The vector space induced by m-grams is high-dimensional, e.g., for n = 4
there exist 256 different dimensions. Moreover, in the case of tokens the resulting
space has infinite dimension as the underlying set .S has infinite size. Computing
and comparing vectors in such high-dimensional spaces seems infeasible at a first
glance. However, for both types of features — n-grams and tokens — the number
of feature strings contained in a single SIP message is linear in its length.

As a consequence, a SIP messages x of length [ comprises at most [ different
n-grams or tokens, that is O(l) dimensions are non-zero in ¢(z). This sparsity of
the embedding ¢(x) can be exploited to derive linear-time methods for extrac-
tion and comparison of feature vectors [24], which ultimately enables efficient
anomaly detection over embedded SIP messages.



2.2 Anomaly Detection

An important extension to current VoIP security is the detection of unknown
network attacks emerging from IP networks. Anomaly detection addresses this
problem and complements signature-based analysis by modeling profiles for “nor-
mality”. Although anomaly detection methods have been successfully applied in
various incarnations of network intrusion detection, such as for identification of
anomalous packet headers [13, 14] or payloads [23, 34], all methods share the
same concept — anomalies are deviations from a learned model of normality —
and only differ in concrete notions of normality and deviation.

The embedding of SIP messages to a vector space introduced in Section 2.1
enables expressing normality and deviation geometrically, which yields intuitive
yet powerful learning models for anomaly detection. The basis for such geometric
learning models is a distance function d, which assess the dissimilarity of two
messages x and z by

d(z,z) = ||o(z) — o(2)]]

and corresponds to a Euclidean distance in the vector space. Messages orig-
inating from a similar context, such as consecutive telephone calls, yield low
distances and lie close to each other, while messages from different contexts,
such as calls monitored at distinct locations, result in higher distances and are
separated from each other. In this geometric view SIP messages are associated
with points forming groups and clouds in the induced vector space depending
on the underlying semantics and context.

For our self-learning system we focus on two simple realizations of geometric
anomaly detection, which build on a global and local concept of normality and de-
viation thereof. Before introducing these concepts, we need to establish some no-
tation. We denote the set of SIP messages used for learning by X = {z1,...,2,}
and refer to a new incoming message as z. During the learning and anomaly de-
tection process all messages x; € X and z are represented as vectors ¢(x;) and
@(2) using the embedding function ¢ introduced in Section 2.1.
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Fig. 2. Geometric anomaly detection.



Global Detection. Network attacks often significantly deviate from normal
traffic in terms of contained substrings. Thus, it is natural to define anomaly
detection using a global model of normality capturing properties shared by the
majority of X. A simple geometric shape reflecting this concept is a hypersphere.
Normality is modeled by placing a hypersphere around the vectors of X and
deviation is determined by the distance from the center p of the hypersphere.
Figure 2(a) illustrates a hypersphere enclosing a set of points, where anomalies
are identified by large distances from the center.

The smallest enclosing hypersphere — the optimal model of normality — can
be determined by solving the following optimization problem

= argmin e ([9(r) — ], (1)

which returns the center u* of the hypersphere with the smallest radius contain-
ing all points in X . Unfortunately, unknown attacks in X may spoil this process
and lead to hyperspheres with larger volume. This problem is alleviated by the
technique of regularization, which “softens” the margin of the hypersphere, such
that outliers and unknown attacks can be compensated. An introduction to this
regularized learning model is provided in [12, 31], covering the respective theory
as well as the efficient computation implemented in our self-learning system.

Once the center p* has been found, deviation ¢ from the model of normality
is determined by computing the distance of an incoming message z from p*,

8(2) = [lo(2) — w*]|- (2)

Application of the learned model in Equation (2) requires computing only a
single distance value for each incoming message, as p* is fully determined from
X during the prior learning phase.

Local Detection. If the SIP traffic monitored at a network node is inherently
heterogeneous, e.g., at a large gateway, a global model of normality might not
suffice for detection of unknown and novel attacks. The embedded messages are
geometrically distributed in different clusters of points hindering application of
a single enclosing hypersphere. To address this issue we extend our self-learning
system with a local anomaly detection scheme, which assesses deviation of a
message by considering only a fraction of messages in the training data.

A local model of normality can be derived using the notion of k-nearest
neighbors. We define the neighbors of a vector ¢(z) using a permutation 7 of X,
such that the embedded message ;) is the i-th nearest neighbor of z in terms
of distances. In other words, 7 sorts the vectors in X according to their distance
from z in ascending order. A simple deviation s from this model is calculated
as the average distance of ¢(z) to its k-nearest neighbors and given by

ds(z) =

ol

k
2 l16(2) = ézall 3)



Messages strongly deviating from their k-nearest neighbors yield a large av-
erage distance, while messages close to their neighbors get a low deviation score.
Figure 2(b) illustrates the concept of k-nearest neighbors for k = 3. Anomalies
deviate in Figure 2(b) from local normality in that they show a large average
distance to the respective three neighboring points.

The average distance to a set of neighbors, however, is density-dependent.
Points in dense regions yield low deviations, while points in sparse areas are
flagged as anomalous, although they do not constitute attacks. Thus, we refine
the deviation § using the average distance between the k-nearest neighbors as
normalization term

[6(2) = d(zra)l

kK k
ZZ |¢ ‘Tﬂ'[J (xTr[Z])”

The first term emphasizes points that lie far away from its neighbors, whereas
the second term discounts abnormality of points in wide neighborhood regions.
In contrast to the global model in Equation (2), computing Equation (4)
requires determining several distance values. In particular, for each incoming
message O(|X|k?) distance computations need to be performed for finding the
k-nearest neighbors and calculating §. Hence, for the local model of normality
the amount of learning data X need to be constrained to achieve effective run-
time performance. Experiments on the run-time as well as detection performance
of the global and local anomaly detection methods are presented in Section 3.

(4)

2.3 Initialization and Retraining

Retraining enables the self-learning system to adapt itself to changes in the
network environment, such as the presence of new terminal nodes or media ser-
vices. To achieve this goal the learning model is trained on a periodic basis using
network traffic previously flagged as normal. The interval of these retraining cy-
cles depends on the monitored volume of SIP traffic and the estimated rate of
changes in the network environment. For instance, devices processing millions
of SIP messages per day might demand updates on a daily basis, while minor
network nodes are sufficiently adapted in weekly or even monthly intervals.

For the initial deployment of the self-learning system, we assume that a coarse
model of normality is already available, e.g., from another running system or
generated using prototypical SIP traffic for the particular VoIP infrastructure.
We thus restrict our scope to the retraining procedure, as initialization basicly
resembles this process.

While automatic retraining provides ease of use to an operator, it intro-
duces a new security vulnerability: attacks and anomalies in the training data
may tamper learning and impede attack detection. In particular, an adversary
could attempt to “poison” the learning model during retraining using specifically



crafted SIP messages, such that later attacks targeted against the system are not
detected [9]. Thus, defenses against targeted manipulation of our learning system
need to be provided.

Manipulation Defense. As a first defense against manipulations and unknown
attacks the running self-learning system is applied to any potential training
data, eliminating all attacks detectable using the present model of normality. To
further harden the system against adversarial manipulation the following defense
techniques are considered.

(a) Randomization. The traffic volume in enterprise VoIP infrastructures is huge
and due to storage constraints only a limited fraction can be used for retrain-
ing. Instead of choosing a fixed partition, the self-learning system is retrained
with randomly drawn samples which are collected from the monitored traffic
between update cycles.

(b) Sanitization. The collected data is passed to a sanitization procedure filter-
ing out irregular events, e.g., as proposed for network intrusion detection
in [3]. In our self-learning system the collected SIP messages are sorted ac-
cording to their deviation score and messages yielding the highest deviations
are removed, e.g. a fraction of 5%-10%.

(c) Verification. Once a new model is trained it is applied concurrently with the
previous one. As the new model originates from recent traffic, it is supposed
to report similar or lower average deviation in comparison to the old. If after
a fixed verification period the observed average deviation of the new model
is too high, the update process fails and the model is discarded.

These defense methods particularly harden targeted manipulations against
the self-learning system. On the one hand, randomization forces an attacker to
constantly provide manipulated SIP messages to the system in order to resolve
the random sampling. On the other hand, if the attacker sends too many manip-
ulated messages to the system, the retrained model of normality will significantly
deviate from normal traffic and, thus, a comparison with the old learning model
will indicate various false anomalies. Finally, if an attacker controls the majority
of traffic, he can be identified using techniques for detection of denial-of-service
attacks, as proposed for instance in [21, 27, 29].

Calibration. As a last issue related to initialization and retraining of our self-
learning system, we present a calibration procedure, which automatically pro-
vides a threshold for anomaly detection discriminating legitimate SIP traffic
from anomalous or attack messages.

The calibration procedure builds on the concept of cross-validation. The
preprocessed and sanitized training data is segmented into k partitions of equal
size. A learning model is then trained on the SIP messages of k — 1 partitions
and applied on the [ messages of the remaining partition for computation of



deviations scores D = {d1,...,0d;}. This process is repeated k times, such that
for each partition ¢ individual deviation scores D; are determined.

A threshold ¢ is then computed using the largest deviation scores in each
partition D; as defined by

t =

k
Z(maX(Di) —1)?,

ol

k
Z max(D;), v=
i=1

| =

where ¢ corresponds to the mean of the largest deviation scores and v to the
empirical variance. The rational underlying this definition of ¢ is that outliers
and unknown attacks have been filtered from the training data and thus the
largest deviation scores correspond to unusual but still legitimate traffic. The
threshold is determined as the average of these scores, such that similar traffic
is still accepted by the system.

The variance v acts as criterion for assessing the quality of the generated
threshold. The randomization discussed in the previous section provides uni-
formly distributed samples from the running traffic, so that a high empirical
variance of the threshold indicates irregularities in the training data. In this
case the retraining process is aborted and the current calibrated learning model
remains in operation.

3 Experiments

In the previous sections we have introduced the concept of a self-learning system
for anomaly detection. To assess the capabilities of such a system in practice
we conducted experiments on SIP traffic and artificial attacks generated using
a security testing tool. In particular, we were interested to (a) evaluate the
detection performance of our self-learning system on unseen attacks and (b)
provide results for the run-time performance on real SIP traffic.

3.1 Evaluation Data

For our experiments we generated an evaluation data set comprising SIP request
and response messages. These SIP traces contain contiguous SIP dialogs from
a single SIP terminal as well as interleaved SIP dialogs recorded at a network
edge ingress where multiple terminals are connected to. The messages origi-
nated mainly from several NGN test labs where multiple services and inter-
working tests are performed. Others are derived from research demonstrator
setups where new services and functions are elaborated. The final portion of SIP
traces are anonymized original signaling messages. This composition guarantees
a very broad spectrum of correct SIP messages which partly contain Session
Description Protocol (SDP [7]) payloads.

In contrast to Internet services, only few network attacks against SIP-based
devices have been disclosed, most notably attacks identified using fuzzing tech-
niques [1]. In the absence of a large collection of SIP attacks, we conducted our



experiments using artificially generated attacks. A VoIP version of the security
and syntax testing tool Codenomicon Defensics® was applied to produce several
thousand anomalous SIP messages — covering syntactical anomalies as well as se-
curity probes for boundary condition, format string and input validation vulner-
abilities. The generated anomalous SIP messages are post-processed to eliminate
any remaining redundancy by permuting the sequence of the header fields and
randomizing certain header and parameter values. This post-processing takes
care that the original anomalous properties of each message persist, while detec-
tion via artifacts specific to the testing tool is largely prevented.

The resulting evaluation data set contains 4428 normal and 9999 anomalous
SIP messages as raw byte sequences, where headers from the network and trans-
port layer have been removed from each message. For all experiments the data
set is split into disjunct training and testing partitions. The training data was
used for learning models of normality and determining optimal model parame-
ters, while the testing data was applied for generating results using the trained
learning models.

3.2 Detection Performance

In order to evaluate the detection performance of our self-learning system, we
implemented the feature extraction and anomaly detection methods presented
in Section 2.1 and Section 2.2 in a prototypical system. Using this system we
performed the following experimental procedure: 1,000 normal SIP messages are
drawn from the training data, and models of normality are learned for different
model parameters, such as the neighborhood size of the local anomaly detection
method. The learning model achieving the best accuracy on the training data
is then evaluated on 500 normal and 500 anomalous messages randomly drawn
from the testing data. The procedure is repeated over 50 runs and the results
are averaged.

Figure 3 depicts the detection performance of the self-learning system using
2-grams, 4-grams and tokens as string features. Figure 3(a) shows results for the
global anomaly detection method and Figure 3(b) for the local anomaly detection
method. The performance is presented as receiver operating characteristic, in
short ROC, curves which show the false-positive rate of a methods on the x-axis
and the true-positive rate on the y-axis for different thresholds. High detection
accuracy is reflected in the top left of a ROC curve, while random detection
corresponds to a diagonal line. Note that in Figure 3 the true-positive rate is
given in the full interval 0 to 100%, while the false-positive rate shows only the
range from 0 to 1%.

The local anomaly detection method yields a significantly higher detection
accuracy in comparison to the global detection method. In particular, for all
types of feature strings a true-positive rate over 97% is achieved with no false-
positives. Moreover, for the 4-grams features over 99% of the attacks are detected
— even though all attacks were unknown to the system during application. For

® Codenomicon DEFENSICS, http://www.codenomicon. com
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Fig. 3. Detection performance of the self-learning system for different string features.

the global anomaly detection method only the 4-gram features enable similar
accuracy and in contrast the token features provide a very poor detection per-
formance.

As the evaluation data used in our experiments originates from different
sources, it expresses heterogeneous characteristics particularly suitable for ap-
plication of a local anomaly detection method. The superior results presented in
Figure 3(b) confirm this finding on real SIP traffic. Furthermore, the embedding
to a vector space using 4-grams enables a very effective discrimination of nor-
mal traffic and attacks — by capturing particular substrings related to normal
or anomalous messages — so that even the global method yields a high detection
accuracy in the underlying vector space.

3.3 Run-time Performance

In practice, the effectiveness of an intrusion detection system is determined by
the detection rate as well as the run-time performance. In order to analyze the
run-time of our self-learning system, we conducted experiments on a standard
server system using AMD Opteron CPUs. The run-time, however, strongly de-
pends on the complexity of the applied model of normality, which in turn is
learned from provided training data. To model this effect, we varied the number
of SIP messages used for learning from 100 to 1000 messages. For each size,
we monitored the run-time performance of the system as well as the achieved
detection accuracy.

In particular, we performed the following experimental procedure: 1,000 nor-
mal SIP messages are drawn from the evaluation data set and the run-time is
measured for feature extraction and anomaly detection using a previously trained
learning model. Based on the length of each SIP message the throughput of the
system is estimated in terms of Megabits per second. The detection accuracy is
determined using the setup applied in the previous experiment. The procedure
is repeated 50 times and the results are averaged. As string features we focus on
4-grams, which yield the best detection in the previous experiment.
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Fig. 4. Run-time and detection performance for different sizes of training data.

Figure 4 details the results of this experiment, where Figure 4(a) shows the
run-time performance for varying size of training data and Figure 4(b) shows
the corresponding detection accuracy of the self-learning system. The detection
accuracy is given as area under the ROC curve (AUC), which simply integrates
the true-positive rate over the false-positive rate of a ROC curve.

The run-time performance of the global anomaly detection method does not
depend on the size of the training data. As discussed in Section 2.2 the training
data is used to determine a single vector pu* as learning model, and thus, the
run-time is independent of the training size. The accuracy of the global anomaly
detection scheme reaches an AUC value near 99% at around 600 training ex-
amples. On average a total of 70 Mbit per second in terms of SIP messages are
processed using the global anomaly detection scheme.

In comparison the local anomaly detection method significantly depends on
the size of the training data, as for each incoming data point a set of corre-
sponding nearest neighbors need to be determined and evaluated. This process,
however, can be easily parallelized, so that Figure 4(a) reports the run-time for
a single CPU as well as SMP implementations with 2 and 4 CPUs. In this exper-
iment, a detection accuracy at 99% is reached using a training data size of 300
instances which corresponds to a throughput between 2 and 6 Mbit per second
depending on the number of CPUs.

4 Related Work

Security has been an active area of research in the domains of VoIP and IMS
technology. Specifically for the SIP protocol considerable effort has been spent
on identification and categorization of security threats [5, 18, 33]. Among these
threats, attacks targeting the availability of VoIP play a salient role and much
research has studied specific methods for detection and mitigation of denial-of-
service attacks [21, 27, 29, 37].



Beside specific solutions, various concepts for generic VoIP intrusion detec-
tion have been proposed in the community. Sengar et al. [28] and Truong et al.
[32] devise specification-based detection systems using finite state machines for
modeling VoIP protocols. Moreover, rule-based detection frameworks have been
proposed — namely Scidive [36] and VoIP defender [4] — which provide efficient
identification of VoIP attacks at different and across protocol layers.

Attack signatures as commonly used in network intrusion detection systems
such as Snort [25] or Bro [20] were expanded to the SIP protocol by Niccolini
et al. [19] and Apte et al. [2]. Similarly, Geneiatakis et al. [6] derived specific
signatures for detection of malformed message content in the SIP protocol.

A different approach for detection of VoIP attacks using honeypots was pro-
posed by Nassar et al. [15, 17], covering an individual “Honeyphone” as well
as a network of emulated SIP devices. In both scenarios, attacks are identified
when contacting the fake devices and detection rules are derived using Bayesian
inference [16].

The self-learning system proposed in this contribution differs from previ-
ous research in VoIP security, as it does not require providing detection rules,
signatures or protocol specifications prior to deployment. In particular, the sys-
tem exploits characteristics of normal SIP traffic monitored at the network and,
hence, enables identification of yet unknown attacks for which no signatures are
available. In this view, it is similar to anomaly detection concepts proposed by
Kruegel et al. [10, 11], Wang et al. [34, 35] and Rieck et al. [22, 23] for network
intrusion detection.

5 Conclusions

Modern telecommunication in form of VoIP and IMS infrastructures requires
effective defense against sudden network attacks. Current techniques for misuse
detection such as signature-based intrusion detection systems fail to cope with
fast emerging threats as appropriate attack signatures need to be available prior
to a security incident.

We address this problem by introducing a self-learning system for detection of
unknown and novel attacks in the SIP protocol. Our system proceeds by embed-
ding SIP messages to a high-dimensional vector space defined over substrings
contained in the messages. The vectorial representation induces geometric re-
lations between SIP messages and enables the formulation of global and local
anomaly detection methods. Using these methods the self-learning system gen-
erates a model of normality from given SIP traffic and identifies anomalous con-
tent in incoming SIP messages. Furthermore, the system supports retraining the
model of normality automatically to adapt itself to changes in the network envi-
ronment. The retraining process is hardened against manipulation and unknown
attacks in the training data using randomization and sanitization techniques.

Experiments conducted on realistic SIP traffic and anomalous messages gen-
erated using a security testing tool demonstrate the high effectiveness of the
proposed system. In particular, a prototypical implementation achieved a detec-



tion rate of over 99% with no false-positives in the corresponding experiments.
Depending on the applied anomaly detection method, the system is able to pro-
cess SIP traffic up to 70 Megabits per second, while still providing high accuracy.

Although the realized throughput of our implementation does not yet comply

with recent products for the VoIP and IMS market targeting Gigabit networks, it
may provide defense in combination with filtering techniques relieving the impact
of high traffic volumes. Future research will focus on techniques for pre-filtering
of SIP traffic as well as development of run-time improvements.
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